
 1

Executive Summary

Advances in High Performance Computing (HPC) have resulted in dramatic improvements in

application processing performance across a wide range of disciplines ranging from engineering,

manufacturing, finance - risk analysis and revenue management to geological, life and earth sciences.

This mainstreaming of technical computing has driven solution providers towards innovative

solutions that are faster, scalable, reliable, and secure. But these mission critical technical computing

solutions are further challenged with reducing cost and managing complexity.

Further, data explosion has morphed application workloads in traditional technical computing

environments from compute intensive to both compute and data intensive. Also, there continues to be

an unrelenting appetite and need to increasingly solve problems that evolve, grow large and are

complex, further challenging the scale of technical computing processing environments. These newer

domains cover a broad range of emerging applications including fraud detection, anti-terrorist

analysis, social and biological network analysis, semantic analysis, financial and economic modeling,

drug discovery and epidemiology, weather and climate modeling, oil exploration, and power grid

management
1
.

Although most technical computing environments are quite sophisticated, several IT organizations are

still challenged to fully take advantage of available processing capacity to adequately address newer

business needs. For these organizations, effective resource management and job submission that

meets stringent service level agreement (SLA) requirements across multiple departments because

sharing IT infrastructure is an extremely complex process. They require higher levels of shared

infrastructure utilization and better application processing throughput, while keeping costs lower.

Itôs hard to optimize the execution of the wide range of applications using clusters and ensure high

cluster utilization given diverse workloads, business priorities and application resource needs.

To address complex technical computing requirements, IBM Platform Load Sharing Facility (LSF) is

IBMôs flagship solution that is successfully deployed across many industries and is continuously

evolving to address contemporary challenging technical computing needs. As a powerful workload

manager, IBM Platform LSF provides comprehensive, intelligent, policy-driven scheduling features

that enable users to fully utilize all their IT infrastructure resources while ensuring optimal

application performance.

This whitepaper describes the key aspects of the IBM Platform LSF underlying architecture and how

it is tuned to addresses the business challenges faced by technical computing environments to

optimize the use of shared clusters. The target audience includes chief technical officers (CTO),

technical evaluators and purchase decision makers, who need to understand LSFôs architectural

capabilities and relate them to business benefits such as how LSF can help in containing operational

and infrastructure costs while increasing scale, utilization, productivity and resource sharing in

technical computing environments.

1 Big Data in HPC ï Back to the future http://blogs.amd.com/work/2011/04/13/big-data-in-hpc-back-to-the-future/

How IBM Platform LSF Architecture Accelerates Technical Computing

Sponsored by IBM

Srini Chari, Ph.D., MBA

September, 2012

mailto:chari@cabotpartners.com

C
a

b
o

t
P

a
r
tn

e
r
s
 G

r
o

u
p

,
In

c
.

1
0

0
 W

o
o

d
c
r
e

s
t

L
a

n
e

,
D

a
n

b
u

r
y
 C

T
 0

6
8

1
0

,

 w
w

w
.c

a
b
o

tp
a

r
tn

e
r
s
.c

o
m

 Cabot

Partners
Optimizing Business Value

http://blogs.amd.com/work/2011/04/13/big-data-in-hpc-back-to-the-future/
mailto:chari@cabotpartners.com

 2

Introduction

Advances in High Performance Computing (HPC) and technical computing have resulted in

dramatic improvements in application processing performance across a wide range of disciplines.

Although most technical computing environments are quite sophisticated, several IT organizations

find it challenging to maximize productivity from available processing capacity and meet newer

business needs adequately.

HPC clusters deployed today across several verticals typically consist of hundreds or thousands of

compute servers, storage and network interconnect components. These require substantial

investment and drive up capital, personnel and operating costs. For maximum Return on Investment

(ROI), these technical computing environments must be shared across several users and departments

within an organization. The ever increasing computing demands in a continuously growing compute

cluster requires fair sharing and effective utilization of raw clustered compute capability. Sharing is

made possible through intelligent workload management that involves job scheduling and

controlling shared resources, in a way that boosts cluster resource utilization and quality of service

(QoS) to meet business priorities and SLAs.

As business needs evolve, technical compute environments must manage existing deployed

applications as well as address newer business requirements. Maximizing throughput
2
 and

maintaining optimal application performance are the two key challenges in technical computing

environments that are hard to address simultaneously. High throughput requires elimination of load

imbalance among constituent compute nodes in a cluster. Optimal application performance

necessitates reduction in communication overhead by appropriately mapping application workload

to the best-fit available compute resources in the cluster. Such technical computing needs are

addressed by workload management solutions that typically consist of a resource manager and job

scheduler which together prevent jobs from competing with each other for limited shared resources.

IBM Platform LSF is a powerful and comprehensive technical computing workload management

platform that supports various applications and diverse workloads across several industry verticals

on a computationally distributed system. It has proven capabilities such as the ability to scale to

thousands of nodes, built-in high availability, intelligent job scheduling and sophisticated yet simple

to use resource management capabilities that provide shared cluster manageability. LSF also

provides effective monitoring and fine-grained control over workload scheduling policies that are

well suited for multiple lines of business users within an organization. LSF ensures that resource

allocation is always aligned to business priorities by making the most of heterogeneous shared

resources in a shared cluster infrastructure. It helps improve cluster utilization and QoS by boosting

job throughput, optimizing application performance thereby reducing cycle times and maximizing

productivity in mission critical HPC environments.

In this whitepaper we cover the key aspects of IBM Platform LSF architecture in the context of

business challenges faced by technical computing organizations. Its objective is to empower the

CTOs, technical evaluators and purchase decision makers with a perspective on how LSFôs

architectural capabilities are well equipped to address todayôs HPC challenges specific to their

business case. We also highlight some current LSF features and benefits and how they help in

containing operational and infrastructure costs while increasing scale, utilization, productivity and

resource sharing in technical computing environments.

2 Throughput ï number of jobs completed per unit of time

 3

LSF Architecture

The IBM Platform LSF provides resource-aware scheduling and monitoring capabilities through its

highly scalable and reliable architecture with built-in availability features. Its comprehensive set of

intelligent, policy-driven scheduling capabilities enable full utilization of distributed cluster compute

resources. The LSF architecture is geared to address technical computing challenges faced by users

as well as administrators. It allows users to schedule complex workloads through easy to use

interfaces. It also allows administrators to manage shared cluster resource up to petaFLOP-scale

while increasing application throughput, maintaining optimum performance levels and QoS

consistent with business requirements and priorities. LSFôs modular architecture is unique for the

workload management needs of technical computing environments by providing higher scalability

and flexibility; clearly separating the following key elements of job scheduling and resource

management:

 Policies that govern exchange of load information within cluster nodes and decision making for

placement of tasks

 Mechanisms for transparent remote execution of scheduled jobs

 Interfaces that supporting load sharing applications, and

 Performance optimization of highly scalable HPC applications.

The following sections highlight the how LSF works, how users access various key features, what

are the core elements of LSF and key associated functionality. It also covers the LSF installation

architecture indicating where each LSF component is active within a cluster and how it helps in job

scheduling and resource management tasks.

LSF Cluster Use Model

Individual compute resources in technical computing environments are grouped into one or more

clusters that are managed by IBM Platform LSF. Figure 1 shows how a typical cluster is used and

the job management and resource management roles played by different nodes in a LSF-enabled

cluster. One machine in the cluster is selected by LSF as the ñmasterò node or master host. The

other nodes in the cluster act as slave nodes and can be used by scheduling algorithms to execute

jobs.

Master Nodes: When the cluster nodes start up, LSF uses intelligent, fault-tolerant algorithms for

master node selection. During cluster operation, if the master node fails, LSF ensures that another

node takes the place of the master, thus keeping the master node highly available and cluster services

Figure 1: LSF Cluster Usage Model (source: IBM)

 4

accessible to users at all times. The master node plays a key role in resource management and job

scheduling. The job scheduling decisions are governed by business priorities and policies set up by

the cluster administrator.

Users connect to a cluster via a client and submit their jobs at the job submission node. As these user

jobs queue up, the master decides where to dispatch the job for execution based on the resource

required and current availability of the resources among slave nodes.

Slave Nodes: Each slave machine in the cluster collects its own ñvital signsò or the load information

periodically and reports them back to the master. Detailed information on the load index
3
 for each

node in the cluster is analyzed and used for scheduling decisions to reduce job turnaround time and

cluster throughput. LSF has unique algorithms for smart information dissemination of the load index

and resource usage status to optimize cluster scalability and reliability. These algorithms are proven

to scale up to thousands of nodes in a cluster. These mechanisms help increase shared resource

utilization and enable technical compute environments to manage resource demands efficiently.

Workload Execution: LSF has a remote execution component that starts or stops the jobs on the

assigned slave node. Once the scheduled jobs complete on slave nodes, the completion results and

job status are communicated to the user. LSF also generates reports on resource usage and detailed

job execution logs. Users are able to obtain job execution results as if they were executing those on a

local node. LSF frees the cluster users from having to decide which nodes are best for executing a

job while allowing administrators to set up policies for job execution logic that are best suited for

business needs.

LSF also provides options to checkpoint a job that is running on a slave node, move it to a different

slave node and then resume execution. This feature can help to temporarily suspend running jobs,

free up resources for any critical jobs and then resume jobs from the last execution point instead of

having to restart them all over, thus improving cluster flexibility and utilization.

LSF Components

This section gives an overview of some of the core components of LSF and their key role in job

scheduling and resource management functions. LSF is a layer of software services on top of UNIX

and Windows operating systems that creates a single pool of networked compute and storage

3 Load Index: LSF defines a load -index for each type of resource. Load index quantifies each nodeôs loading condition. Depending on the nature of the

resource, some possibilities are queue length, utilization, or the amount of free resource. Reference: Utopia ï a load sharing facility for a large scale

heterogeneous system

http://cse.unl.edu/~lwang/project/Utopia_A%20Load%20Sharing%20Facility%20for%20Large,%20Heterogeneous%20Distributed%20Computer%20Syst

ems.pdf

Figur e 2: LSF Services - High Level architecture (source: IBM)

http://cse.unl.edu/~lwang/project/Utopia_A%20Load%20Sharing%20Facility%20for%20Large,%20Heterogeneous%20Distributed%20Computer%20Systems.pdf
http://cse.unl.edu/~lwang/project/Utopia_A%20Load%20Sharing%20Facility%20for%20Large,%20Heterogeneous%20Distributed%20Computer%20Systems.pdf

 5

resources. This layered service model provides a resource management framework to allocate,

manage and use clusters as a single entity (Figure 2). LSF takes job requirements as inputs, finds the

best resources to run the job, schedules and executes jobs and monitors its progress. Jobs always run

according to host load and site policies. LSF Base, LSF Batch and LSF Libraries are its three basic

components. Together, they help in distributing work across existing heterogeneous IT resources;

creating a shared, scalable, and fault-tolerant infrastructure that delivers faster and more reliable

workload performance.

LSF Base provides basic load-sharing services for the cluster such as resource usage information,

host selection, job placement advice, transparent remote execution of jobs and remote file options.

These services are provided through the following sub-components:

 Load Information Manager (LIM)

 Process Information Manager (PIM)

 Remote Execution Server (RES)

 LSF Base application programming interface (API)

 Utilities such as lstools , lstcsh and lsmake

LSF Batch extends LSF base services to provide a batch job processing system along with load

balancing and policy-driven resource allocation control. To provide this functionality, LSF Batch

uses the following LSF base services:

 Resource and load information from LIM to perform load balancing activities

 Cluster configuration information and master LIM election service from LIM

 RES for interactive batch job execution

 Remote file operation service provided by RES for file transfer.

LSF Libraries provide APIs for cluster application developers to get job scheduling and resource

management functionality provided by LSF. There are two LSF libraries LSLIB and LSBLIB:

 LSLIB is the core library that provides basic workload management services to applications

across a shared cluster and is a runtime library to easily develop load sharing applications

 LSLIB implements a high level procedural interface that allows applications to interact with

LIM and RES. The other library, LSBLIB, is the batch library and it provides batch services

that are required to submit, control, manipulate, and queue jobs on cluster nodes.

LSF Installation Architecture

LSF consists of a number of servers or daemon processes that run with root privileges on each

participating host (Figure 3) in the cluster and a comprehensive set of utilities that are built on top of

the LSF API.

 6

There are multiple LSF processes running on each host in the cluster. The type and number of

processes running depend on whether the host is a master host, a compute or slave host or one of the

master node candidates as shown in Figure 4.

On each participating host in a LSF cluster an instance of LIM runs and exchanges load information

with its peers on other hosts and advises applications and associated tasks to determine which hosts

are best for execution. Multiple resources on each host and the resource demands of each application

are considered in LIM placement decisions. In addition to help LSF make placement decisions, LIM

also provides load information to those applications that make their own placement decisions.

Figure 3: LSF daemons and their functions in scheduling & resource management (source: IBM)

Figure 4: Installation architecture with various LSF processes running on different nodes in a LSF managed cluster (source: IBM)

 7

Besides LIM, RES is another server or daemon on each host. RES provides the mechanisms for

transparent remote execution of arbitrary tasks. Typically, after placement advice has been obtained

from the LIM, a stream connection is established between the local application and its remote task

through RES on the target host. This is followed by remote task initiation. LSF supports several

models of remote execution to meet the diverse functional and performance requirements of

applications. A LIM and a RES run on every Platform LSF server host. They interface with the

hostôs operating system to give users a uniform, host-independent environment. Figure 5 shows

sample job submission steps, for regular as well as batch jobs that are run on a LSF enabled cluster

and various interactions between LSF components during the job submission and execution process.

Another unique architectural feature of LSF is that it allows multiple scheduling policies to coexist in

the same cluster. Figure 6 shows the central component of the LSF scheduling architecture - the

plug-in scheduler, that provides support for multiple scheduling policies. LSF makes scheduling

decisions based on a flexible architecture that accommodates multiple scheduling approaches that

can run concurrently and be used in combination, including user-defined scheduling approaches.

The LSF scheduler plug-in API can be used to customize existing scheduling policies or implement

new ones that can operate with existing LSF scheduler plug-in modules. These custom scheduling

policies can influence, modify, or override LSF scheduling decisions empowering administrators to

model the job scheduling decisions aligned with business priorities. The scheduler plug-in

architecture is fully external and modular; new scheduling policies can be prototyped and deployed

without having to change the compiled code of LSF.

Figure 5: Interactions between various LSF components duirng job submission and execution.

Figure 6: LSF Plug-in scheduler architecture (source: IBM)

